A BIFURCATION RESULT FOR EQUATIONS WITH ANISOTROPIC p-LAPLACE-LIKE OPERATORS

نویسنده

  • VY KHOI
چکیده

where X is an appropriate function space and φi , F are given functions. The coefficients φi’s are different in general. In the particular case where φi(|ξ |)= |ξ |p−2, for all ξ ∈ R , for all i ∈ {1, . . . ,N}, (1.1) reduces to the p-Laplacian equation and there are several bifurcation results available (cf. [3, 4]). It seems that bifurcation problems for anisotropic elliptic operators have not been addressed in detail. As is well known in bifurcation theory, a first step is to find a “linearization” of (1.1) such that bifurcation in (1.1) can be studied through the eigenvalues and eigenfunctions of the linearization. Different from equations with compact perturbations of linear operators, we show that (1.1) can be related to a nonlinear but homogeneous equation (called the homogenization of (1.1)). Another difficulty is that since the functions φi’s may have different growths at

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform

In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...

متن کامل

Symmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation

‎In this paper Lie point symmetries‎, ‎Hamiltonian equations and conservation‎ ‎laws of general three-dimensional anisotropic non-linear sourceless heat transfer‎ ‎equation are investigated‎. ‎First of all Lie symmetries are obtained by using the general method‎ based on invariance condition of a system of differential equations under a pro‎longed vector field‎. ‎Then the structure of symmetry ...

متن کامل

Solution to time fractional generalized KdV of order 2q+1 and system of space fractional PDEs

Abstract. In this work, it has been shown that the combined use of exponential operators and integral transforms provides a powerful tool to solve time fractional generalized KdV of order 2q+1 and certain fractional PDEs. It is shown that exponential operators are an effective method for solving certain fractional linear equations with non-constant coefficients. It may be concluded that the com...

متن کامل

GLOBAL BIFURCATION PROBLEMS ASSOCIATED WITH k-HESSIAN OPERATORS

In this paper we study global bifurcation phenomena for a class of nonlinear elliptic equations governed by the h-Hessian operator. The bifurcation phenomena considered provide new methods for establishing existence results concerning fully nonlinear elliptic equations. Applications to the theory of critical exponents and the geometry of k-convex functions are considered. In addition, a related...

متن کامل

Bifurcation Analysis of Elliptic Equations Described by Nonhomogeneous Differential Operators

In this article, we are concerned with a class of nonlinear partial differential elliptic equations with Dirichlet boundary data. The key feature of this paper consists in competition effects of two generalized differential operators, which extend the standard operators with variable exponent. This class of problems is motivated by phenomena arising in non-Newtonian fluids or image reconstructi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001